
AP® COMPUTER SCIENCE A
2016 GENERAL SCORING GUIDELINES

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Apply the question assessment rubric first, which always takes precedence. Penalty points can only be
deducted in a part of the question that has earned credit via the question rubric. No part of a question
(a, b, c) may have a negative point total. A given penalty can be assessed only once for a question, even if
it occurs multiple times or in multiple parts of that question. A maximum of 3 penalty points may be
assessed per question.

1-Point Penalty

v) Array/collection access confusion ([] get)

w) Extraneous code that causes side-effect (e.g., writing to output, failure to compile)

x) Local variables used but none declared

y) Destruction of persistent data (e.g., changing value referenced by parameter)

z) Void method or constructor that returns a value

No Penalty

o Extraneous code with no side-effect (e.g., precondition check, no-op)

o Spelling/case discrepancies where there is no ambiguity*

o Local variable not declared provided other variables are declared in some part

o private or public qualifier on a local variable

o Missing public qualifier on class or constructor header

o Keyword used as an identifier

o Common mathematical symbols used for operators (× • ÷ < > <> ≠)

o [] vs. () vs. <>

o = instead of == and vice versa

o length/size confusion for array, String, List, or ArrayList; with or without ()

o Extraneous [] when referencing entire array

o [i,j] instead of [i][j]

o Extraneous size in array declaration, e.g., int[size] nums = new int[size];

o Missing ; where structure clearly conveys intent

o Missing { } where indentation clearly conveys intent

o Missing () on parameter-less method or constructor invocations

o Missing () around if or while conditions

*Spelling and case discrepancies for identifiers fall under the “No Penalty” category only if the correction
can be unambiguously inferred from context. For example, “ArayList” instead of “ArrayList”. As a
counter example, note that if the code declares “Bug bug;”, then uses “Bug.move()” instead of
“bug.move()”, the context does not allow for the reader to assume the object instead of the class.

AP® COMPUTER SCIENCE A
2016 SCORING GUIDELINES

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 4: String Formatter

Part (a) totalLetters 2 points

Intent: Calculate the total number of letters in a list of words

 +1 Accesses all strings in wordList and adds length of each to accumulated count
(no bounds errors)

 +1 Initializes and returns accumulated count

Part (b) basicGapWidth 2 points

Intent: Calculate the minimum number of spaces (basic gap width) to be placed between each word in
 the formatted string

 +1 Calls totalLetters correctly and uses result

 +1 Returns correct calculated value

Part (c) format 5 points

Intent: Return a formatted string consisting of words from wordList separated by one or more spaces

 +1 Calls basicGapWidth and leftoverSpaces correctly and uses results

 +1 Adds all strings in wordList to formatted string in original order (no bounds errors)

 +1 Inserts basicGapWidth spaces between each pair of words in formatted string

 +1 Inserts one space between first leftoverSpaces pairs of words in formatted string

 +1 Initializes and returns formatted string (no extra or deleted characters)

AP® COMPUTER SCIENCE A
2016 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2016 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 4: String Formatter

Part (a):

public static int totalLetters(List<String> wordList)
{

int total = 0;

for (String word : wordList)
{
 total += word.length();
}
return total;

}

Part (b):

public static int basicGapWidth(List<String> wordList, int formattedLen)
{
 return (formattedLen – totalLetters(wordList)) / (wordList.size()-1);
}

Part (c):

public static String format(List<String> wordList, int formattedLen)
{
 String formatted = "";
 int gapWidth = basicGapWidth(wordList, formattedLen);
 int leftovers = leftoverSpaces(wordList, formattedLen);

 for (int w = 0; w < wordList.size() - 1; w++)
 {
 formatted = formatted + wordList.get(w);
 for (int i = 0; i < gapWidth; i++)
 {
 formatted = formatted + " ";
 }
 if (leftovers > 0)
 {
 formatted = formatted + " ";
 leftovers--;
 }
 }
 formatted = formatted + wordList.get(wordList.size() - 1);

 return formatted;
}

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2016 SCORING COMMENTARY

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 4

Overview

This question assessed the students’ ability to use ArrayLists, Strings, and mathematical
expressions involving integers. Students also needed to understand how to use iteration and proper
method calls. Students were provided with specifications for three static methods that would be used
to create a properly spaced string of a specified length that contained a set of words given in an
ArrayList object, wordList.

In part (a) students were asked to write the totalLetters method that sums and returns the lengths of
all of the strings in its parameter wordList.

In part (b) students were asked to write a method to compute the minimum number of spaces necessary
between each pair of words to space them out to the given length.

In part (c) students were asked to write the method that creates a single string of the given length by
inserting spaces into the gaps between words so that the number of spaces in each gap is the same. If
more spaces were needed to reach the given length, an additional space would be added to each gap,
starting with the first gap, so that the lengths of the gaps would differ by at most 1. In doing this, they
were required to call the basicGapWidth method written in part (b), as well as the leftoverSpaces
method described in the problem but not implemented by the student.

To solve this problem, the student needed to traverse an ArrayList with no bounds errors, using the
get method of the ArrayList class in an indexed for loop. The student could use an enhanced for
(for-each) loop, but needed to understand the consequences of not having an index to manipulate in
part (c). The student needed to properly implement a static method that initialized, accumulated, and
returned a computed value. The student needed to properly determine the length of a string, as well as
initialize an empty string and concatenate strings.

The student needed to properly call methods from within a class, including those they have implemented,
and those for which they have only a description. Students needed to translate a mathematical expression
into an appropriate Java expression, and understand and implement a complex algorithm from a written
description.

Sample: 4A
Score: 8

In part (a) the student writes a correct for loop to access every string in wordList and sums the
lengths of all the strings into the accumulator total, which earned the "accesses all" point. The
accumulator is properly declared, initialized, and returned, which earned the "initialize and return" point.
Part (a) earned 2 points.

In part (b) the student correctly calls totalLetters(wordList) and saves the result into a variable.
This variable is used in a subsequent calculation, which earned the "calls totalLetters" point. The
result is calculated correctly and returned, which earned the "return correct value" point. Part (b) earned 2
points.

In part (c) the student correctly calls basicGapWidth and leftOverSpaces, saving the results in
variables. These variables are used in subsequent calculations, which earned the "calls methods" point. The
student uses a for loop to properly access each string in wordList and adds each to the result string,
which earned the "adds all" point. By initializing a counter to 0 and using a while loop with an increment,

AP® COMPUTER SCIENCE A
2016 SCORING COMMENTARY

© 2016 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 4 (continued)

the student adds basicGapWidth spaces to the string between each pair of words and adds single spaces to
the first leftoverSpaces gaps, which earned the "basicGapWidth" and "leftoverSpaces" points. Because
basicGapWidth spaces are added after every word including the last, instead of only in the gaps between
words, the final returned string is incorrect, and the final point was not earned. Part (c) earned 4 points.

Sample: 4B
Score: 5

In part (a) the student writes a correct for loop to access every string in wordList, and concatenates
these strings into one long string whose length is returned, which earned the "accesses all" point. The long
string, which plays the role of the accumulator in this solution, is properly declared, initialized, and returned,
which earned the "initialize and return" point. Part (a) earned 2 points.

In part (b) the student incorrectly calls totalLetters as if it were a method of the ArrayList class,
and so the "calls totalLetters" point was not earned. The calculation is correct, and the result is
returned, which earned the "return correct value" point. Part (b) earned 1 point.

In part (c) the student correctly calls basicGapWidth and uses its result, but does not call
leftoverSpaces, so the "calls methods" point was not earned. The student uses a for loop to correctly
access all strings in wordList, which earned the "adds all" point. The inner for loop correctly adds
basicGapWidth spaces to the result string after each word, which earned the "basicGapWidth" point.
Because there is no attempt to call leftoverSpaces, the "leftoverSpaces" point was not earned. Because
basicGapWidth spaces are added after every word including the last, instead of only in the gaps between
words, the final returned string is incorrect, and the final point was not earned. Part (c) earned 2 points.

Sample: 4C
Score: 1

In part (a) the student uses a for loop to add the lengths of all strings in wordList. Use of the incorrect
method length instead of size in the loop condition is not penalized, so the student earned the
"accesses all" point. The accumulator is not initialized, so the "initialize and return" point was not earned.
Part (a) earned 1 point.

In part (b) the student attempts to use a field called totalLetters instead of making a method call, so
the "calls totalLetters" point was not earned. The calculation is incorrect, and its result is not returned,
so the "return correct value" point was not earned. Part (b) did not earn any points.

In part (c) the student makes an incorrect call to basicGapWidth and makes no attempt to call
leftOverSpaces, so the "calls methods" point was not earned. The student uses a for loop to correctly
access each element of wordList, but simply assigns the element to the formatted string during each
iteration instead of appending it to the formatted string, so the "adds all" point was not earned. Because of
this error, basicGapWidth spaces are not added to the formatted string, so the "basicGapWidth" point was
not earned. There is no attempt to add an additional space to each of the first leftOverSpaces gaps, so the
"leftoverSpaces" point was not earned. The resulting formatted string is not returned, so the final point is not
earned. Part (c) did not earn any points.

	ap16_compsci_general_scoring_guidelines_final
	ap16_compsci_q4_scoring guidelines_final
	Question 4: String Formatter

	ap16_compsci_canonical__q4_final
	q4_studentComputer Science A_APC_Final
	ap16_compsci_apc_commentary_q4
	Question 4
	Overview
	Sample: 4A
	Score: 8

	Question 4 (continued)
	Sample: 4B
	Score: 5
	Sample: 4C
	Score: 1

