Practice AP Physics [7]

Unit 1: Kinematics

- Ecological Relationships
 - Vector vs. Scalar: Vectors include directions.
 - Displacement vs. Distance
 - Velocity vs. Speed: Include direction for velocity.
 - Acceleration: (also a vector)
 - Key Equations:
 - $v = v_0 + at$
 - $ullet \Delta x = v_0 t + rac{1}{2}at^2$

 - ullet $\mathbf{v}^2=\mathbf{v}^2_0+2\mathbf{d}\Delta\mathbf{x}$ ullet $\Delta x=rac{1}{2}(v_0+v)t$
 - Projectile Motion
 - Position-Time Graphs: Slope = velocity
 - **Velocity-Time Graphs:** Slope = acceleration
 - Acceleration-Time Graphs
 - Gravity: Gravity: g=9.8 m/s²

Practice AP Physics []

Unit 2: Dynamics

 Equilibrium: Net force = 0 Newton's Laws: 1st: Law of Inertia 2nd: F = ma 3rd: Action-Reaction Friction: Fp = uFn Ramps/Inclined Planes: Free body diagrams Force Body Diagrams Net Force Calculation
Additional Notes:

Practice AP Physics [7]

Unit 3: Circular Motion & Gravitation

- Centripetal Force: Not an actual force, net force $\,F_c=rac{mv^2}{r}$ Centripetal Acceleration: $a_c=rac{v^2}{r}$
- Universal Gravitation: $F=Grac{m_1m_2}{r^2}$
- Uniform Circular Motion: Constant speed
- Gravitational Mass vs. Inertial Mass

Practice AP Physics [7]

Unit 4: Energy

• Work: W = FdParallel: (+) Work

• Antiparallel: (-) Work

ullet Energy Types:Kinetic Energy: $KE=rac{1}{2}mv^2$

ullet Potential Energy: $PE_g=mgh,\ PE_s=rac{1}{2}kx^2$

• Mechanical Energy: Sum of kinetic and potential energy

• Power: $P = \frac{W}{t}$ or P = Fv

Conservation of Energy

• Graphs & Diagrams

Practice AP Physics []

Unit 5: Momentum

• Momentum: p = mv
• Impulse: ΔP = J
Conservation of Momentum
Collisions: Elastic: Kinetic Energy and Momentum conserved
• Inelastic: Momentum conserved
• Center of Mass
Additional Notes:

Practice AP Physics [7]

Unit 6: Simple Harmonic Motion

- Spring & Pendulum
- Key Relationships:Hooke's Law: F = kx
- Period Equations:Pendulum: $(T=2\pi\sqrt{rac{L}{g}})$
- Spring: $(T=2\pi\sqrt{rac{m}{k}})$

AP Physics 1: Torque & Rotational Motion

Practice AP Physics [7]

• Rotational Kinematics: θ,ω,αSimilar to linear kinematics with rotational symbols

Unit 7: Torque & Rotational Motion

• Torque: t = Iα
• Moment of Inertia: $I = \Sigma mr^2$
• Angular Momentum: L=Iω
Conservation of Angular Momentum
Additional Notes:

