Practice AP Physics [7]

Unit 1: Fluids

- Density: $(rho = \frac{m}{V})~$ m = mass, V = volume
- Pressure: P = $(\frac{F}{A})$ F = force, A = area
- **Pascal's Principle:** P₁ = P₂ (Pressure applied at any point in an incompressible fluid is transmitted undiminished)
- Continuity Equation: $(A1v_1 = A2v_2)A = cross-sectional$ area, v = fluid velocity
- Bernoulli's Equation: $(P_1+rac{1}{2}
 ho v_1^2+
 ho gh_1=P_2+rac{1}{2}
 ho v_2^2+
 ho gh_2)$
- Archimedes' Principle: Fb = pfluid .V_{əisrespect} . g
- F₆ = buoyant force

Practice AP Physics [7]

Unit 2: Thermodynamics

- Temperature Conversion:T(K)=T(°C)+273.15
- Ideal Gas Law: PV=nRTP = pressure, V = volume, n = number of moles, R = ideal gas constant, T = temperature
- ullet Kinetic Theory: $(frac 32 k_B T = rac{1}{2} m v_{rms}^2)$
- First Law of Thermodynamics: $\Delta U = Q WQ = \text{heat added}, W = \text{work done by the system}$
- Heat Transfer: $Q=mc\Delta TQ=heat$, m=mass, c=specific heat, $\Delta T=change in temperature$
- Heat Engine Efficiency: $(\eta = \frac{W_{out}}{Q_{in}})$

Practice AP Physics [7]

Unit 3: Electric Force, Field, and Potential

• Coulomb's Law:
$$(F_e=k_erac{|q_1q_2|}{r^2})$$

• ke = 8.9 x 1109x Mcm2

• Electric Field:
$$(E=rac{F_e}{q}=k_erac{|q|}{r^2})$$

• Electric Potential Energy:
$$(U=k_e rac{q_1 q_2}{r})$$

• Electric Potential:
$$(V=rac{U}{q}=k_erac{q}{r})$$

• Capacitance:
$$(C=rac{Q}{V})$$

• Parallel Plate Capacitor:
$$(C = \frac{\epsilon_0 A}{d})$$

• ϵ_0 = permittivity of free space, A = area, d = separation between plates

Practice AP Physics [7]

Unit 4: Circuits

- Ohm's Law: V = IRV = voltage, I = current, R = resistance
- Resistors in Series: $R_eq = R_1 + R_2 + \dots$
- Resistors in Parallel: $(rac{1}{R_{eq}} = rac{1}{R_1} + rac{1}{R_2} + \cdots)$
- **Power:** $(P = IV = I^2R = \frac{V^2}{R})$
- Kirchhoff's Rules:Junction Rule: $\Sigma I_{in} = \Sigma_{out}$
- Loop Rule: $\Sigma\Delta V = 0$
- Capacitors in Series: $(rac{1}{C_{eq}} = rac{1}{C_1} + rac{1}{C_2} + \cdots)$
- Capacitors in Parallel: Ceq = C1 + C2 +.....

Practice AP Physics [7]

Unit 5: Magnetism & Electromagnetic Induction

• Magnetic Force on a Charge: $F_8 = qvBsin\theta$

q = charge, v = velocity, B = magnetic field

• Magnetic Force on a Wire: $F_8 = ILBsin\theta$

I = current, L = length of wire, B = magnetic field

• Ampère's Law: $(\oint ec{B} \cdot dec{l} = \mu_0 I_{enc})$

ullet Faraday's Law: $(\mathcal{E}=-rac{d\Phi_B}{dt})$

 Φ_6 = magnetic flux

• Lenz's Law: The induced emf always opposes the change in magnetic flux

• Inductance: $(V=Lrac{dI}{dt})$

Practice AP Physics [7]

Unit 6: Geometric & Physical Optics

- Snell's Law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$
- Lens/Mirror Equation: $(rac{1}{f}=rac{1}{d_o}+rac{1}{d_i})$
- f = focal length, do = object distance, di = image distance
- Magnification: $(M=-rac{d_i}{d_o})$
- ullet Critical Angle: $(\sin heta_c = rac{n_2}{n_1})(fortotal internal reflection)$
- ullet Young's Double-Slit Experiment: $(x=rac{\lambda L}{d})$
- x = fringe spacing, $\lambda = \text{wavelength}$, L = distance to screen, d = slit separation
- **Diffraction Grating:** $dsin\theta = m\lambda d$
- mmm = order of diffraction

Practice AP Physics [7]

Unit 7: Quantum, Atomic, & Nuclear Physics

• Photon Energy: $(E=hf=rac{hc}{\lambda})$

ullet $(h=6.626 imes10^{-34})J\cdot s(Planck'sconstant)$

• Photoelectric Effect: $K_{max} = hf - \theta$

• de Broglie Wavelength: $(\lambda = \frac{h}{p})$

ppp = momentum

ullet Heisenberg Uncertainty Principle: $(\Delta x\cdot \Delta p\geq rac{h}{4\pi})$

• Radioactive Decay: $N(t) = N_0e^{-yT}$

λ=decay constant

• Mass-Energy Equivalence: E = mc²