Practice AP Physics [7]

Unit 1: Electrostatics

- Law of Conservation of Charge: Charge cannot be created or destroyed, only transferred.
- Conductors: Charge distributes evenly on the surface, does not hold inside.
- Inside has zero net charge.
- Insulator: Charge does not distribute evenly, holds charge in one spot.
- Coulomb's Law: $(F_e=krac{|q_1q_2|}{r^2})$
- Positive F_e : repel, Negative F_e : attract
- Electric Field: $_{m{\sigma}}(E=rac{F_e}{a})$
- $(E=krac{q}{r^2})$ for a point charge.
- Gauss's Law: $(\oint ec{E} \cdot dec{A} = rac{Q_{
 m enc}}{\epsilon_0})$
- Electric Potential Energy: $(rac{q_1q_2}{r})$
- Electric Potential: $(V = \frac{U}{q} = k \frac{q}{r})$
- $oldsymbol{q}$ Potential Difference (Voltage): $(\Delta V = -\int ec{E} \cdot dec{s})$
- ullet Equipotential Surfaces: Surfaces where the potential is constant, (E)
- is perpendicular to equipotential surfaces.

Practice AP Physics [7]

Unit 2: Conductors, Capacitors, & Dielectrics

• Capacitance:
$$(C=rac{Q}{V})$$

• Units: Farads (F)

ullet Parallel Plate Capacitor: $(C=rac{\epsilon_0 A}{d})$

• Capacitors in Series: $(rac{1}{C_{
m eq}} = rac{1}{C_1}^{lpha} + rac{1}{C_2} + \cdots)$

• Capacitors in Parallel: $(C_{
m eq}=C_1+C_2+\cdots)$

ullet Energy Stored in Capacitor: $(U=rac{1}{2}CV^2)$

• Dielectrics:Increases capacitance by a factor K: C'=KC

• Electric Field in Dielectrics: $(E=rac{E_0}{K})$

ullet Capacitance with Dielectric: $(C=rac{K\epsilon_0A}{d})$

•
$$(U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} CV^2)$$

Practice AP Physics [7]

Unit 3: Electric Circuits

• Current:
$$(I=rac{dQ}{dt})$$

•
$$(I = \frac{V}{R})(Ohm'sLaw)$$

• Resistance:
$$(R=rac{
ho L}{A})$$

• ρ = resistivity, L = length, A = area

• Ohm's Law: V = IR

• Power:
$$(P=IV=I^2R=rac{V^2}{R})$$

• Kirchhoff's Laws:Junction Rule: $\Sigma I_{in} = \Sigma I_{out}$

• Loop Rule: $\Sigma \Delta = 0$

• Resistors in Series: $(R_{
m eq}=R_1+R_2+\cdots)$

• Resistors in Parallel:
$$(rac{1}{R_{
m eq}} = rac{1}{R_1} + rac{1}{R_2} + \cdots)$$

$$ullet$$
 RC Circuits:Charging: $Charging: (q(t) = Q_{
m max} \left(1 - e^{-t/RC}
ight))$

ullet Discharging: $Q(t) = Q_{
m max} e^{-t/RC}$

Practice AP Physics [7]

Unit 4: Magnetic Fields

- Magnetic Force on a Moving Charge: F_6 = $qvBsin\theta$
- Right-hand rule: Thumb (v), Fingers (B), Palm (Force).
- Magnetic Force on a Current-Carrying Wire: F_6 = ILBsin θ
- Biot-Savart Law: $(dec{B}=rac{\mu_0 I}{4\pi}rac{dec{l} imes\hat{r}}{r^2})$
- Ampère's Law: $(\oint ec{B} \cdot dec{l} = \mu_0 I_{
 m enc})$
- Magnetic Flux: $(\Phi_B = ec{B} \cdot ec{A} = BA\cos heta)$
- Torque on a Loop: $T = NIABsin\theta$

Unit 5: Electromagnetism

- Faraday's Law of Induction: $(\mathcal{E}=-rac{d\Phi_B}{dt})$
- Induced emf opposes the change in magnetic flux (Lenz's Law).
- Inductance: $(V=Lrac{dI}{dt})$
- $(L=rac{\mu_0N^2A}{I})$
- Inductors in Circuits:RL Circuit (Charging):
- $(I(t) = rac{\mathcal{E}}{R} \Big(1 e^{-t/ au} \Big))$
- RL Circuit (Discharging): $I(t) = I_0 e^{-T/t}$
- Time constant : $(au = \frac{L}{R})$ LC Oscillations: $(\omega_0 = \frac{L}{\sqrt{LC}})$

$$(f_0=rac{1}{2\pi\sqrt{LC}})$$

- Transformers: $(rac{V_s}{V_n} = rac{N_s}{N_p})$
- $(\frac{I_s}{I_n} = \frac{N_p}{N_s})$