Practice AP Statistics 🖸

#### **Unit 1: Exploring One-Variable Data**

- Variation in categorical and quantitative variables: Understand the difference between categorical and quantitative data and how variation occurs in each.
- Representing data using tables or graphs: Use tables, bar charts, histograms, dot plots, and box plots to represent data visually.
- Calculating and interpreting statistics: Calculate measures of central tendency (mean, median, mode) and spread (range, IQR, standard deviation).
- **Describing and comparing distributions of data:** Use terms like shape, center, spread, and outliers to describe distributions.
- **The normal distribution:** Recognize and use the properties of the normal distribution, including empirical rule (68-95-99.7%).

| Additional Notes: |  |
|-------------------|--|
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |



Practice AP Statistics 🖸

#### **Unit 2: Exploring Two-Variable Data**

- Comparing representations of 2 categorical variables: Use two-way tables and segmented bar charts to compare categorical variables.
- Calculating statistics for 2 categorical variables: Calculate and interpret marginal and joint probabilities.
- Representing bivariate quantitative data using scatter plots: Plot and interpret scatter plots to explore relationships between two quantitative variables.
- **Describing associations in bivariate data and interpreting correlation:** Describe associations using direction, form, and strength; interpret the correlation coefficient (r).
- **Linear regression models:** Fit a linear model to data and interpret the slope and y-intercept in context.
- Residuals and residual plots: Analyze residuals to assess the fit of a linear model.
- **Departures from linearity:** Identify and describe non-linear patterns in data.

| <u>Additional Notes</u> : |  |  |
|---------------------------|--|--|
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |



Practice AP Statistics [2]

### **Unit 3: Collecting Data**

- Planning a study: Develop a plan for collecting data, including defining the population and sampling methods.
- **Sampling methods:** Understand simple random sampling, stratified sampling, and cluster sampling.
- Sources of bias in sampling methods: Identify and describe potential biases, including undercoverage, nonresponse, and voluntary response bias.
- **Designing an experiment:** Distinguish between observational studies and experiments; understand random assignment and control.
- Interpreting the results of an experiment: Draw valid conclusions based on experiment design, considering causality and generalizability.

| <u>Additional Notes</u> : |  |  |
|---------------------------|--|--|
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |
|                           |  |  |



Practice AP Statistics [2]

#### **Unit 4: Probability, Random Variables, and Probability Distributions**

- **Using simulation to estimate probabilities:** Use random simulations to estimate the likelihood of events.
- Calculating the probability of a random event: Apply probability rules, including addition and multiplication rules, to calculate event probabilities.
- Random variables and probability distributions: Understand discrete and continuous random variables and their probability distributions.
- The binomial distribution: Recognize and apply the binomial probability formula.
- The geometric distribution: Calculate probabilities using the geometric distribution for trials until the first success.

| Additional Notes: |  |
|-------------------|--|
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |



Practice AP Statistics [2]

### **Unit 5: Sampling Distributions**

- Variation in statistics for samples collected from the same population: Understand how sample statistics vary and how they relate to the population parameters.
- The central limit theorem: Use the CLT to justify that sampling distributions of the sample mean are approximately normal for large sample sizes.
- Biased and unbiased point estimates: Distinguish between biased and unbiased estimators.
- Sampling distributions for sample proportions: Describe and calculate standard error for sampling distributions of sample proportions.
- Sampling distributions for sample means: Understand and calculate the standard error for sampling distributions of sample means.



Practice AP Statistics [2]

### **Unit 6: Inference for Categorical Data: Proportions**

- Constructing and interpreting a confidence interval for a population mean: Calculate confidence intervals for means using sample data.
- Setting up and carrying out a test for a population mean: Conduct hypothesis tests for population means.
- Interpreting a p-value and justifying a claim about a population mean: Use p-values to justify claims about population means.
- Confidence intervals and tests for the difference of 2 population means: Compare two population means using confidence intervals and hypothesis tests.

| Additional Notes: |  |  |
|-------------------|--|--|
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |



Practice AP Statistics [2]

#### **Unit 7: Inference for Quantitative Data: Means**

- Constructing and interpreting a confidence interval for a population mean: Calculate confidence intervals for means using sample data.
- Setting up and carrying out a test for a population mean: Conduct hypothesis tests for population means.
- Interpreting a p-value and justifying a claim about a population mean: Use p-values to justify claims about population means.
- Confidence intervals and tests for the difference of 2 population means: Compare two population means using confidence intervals and hypothesis tests.

| Additional Notes: |  |
|-------------------|--|
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |



Practice AP Statistics [7]

### **Unit 8: Inference for Categorical Data: Chi-Square**

- The chi-square test for goodness of fit: Test how well observed categorical data fit an expected distribution.
- The chi-square test for homogeneity: Compare distributions of categorical variables across different populations.
- The chi-square test for independence: Assess whether two categorical variables are independent.
- Selecting an appropriate inference procedure for categorical data: Choose the correct test (goodness of fit, homogeneity, independence) based on the context.

| Additional Notes: |  |
|-------------------|--|
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |
|                   |  |



Practice AP Statistics [7]

### **Unit 9: Inference for Quantitative Data: Slopes**

- Confidence intervals for the slope of a regression model: Construct and interpret confidence intervals for the slope of a regression line.
- **Setting up and carrying out a test for the slope of a regression model:** Perform hypothesis tests for the slope, interpreting the significance of the relationship.
- Selecting an appropriate inference procedure: Choose the right test or confidence interval based on the data type and research question.

| <u>Additional Notes</u> : |  |
|---------------------------|--|
|                           |  |
|                           |  |
|                           |  |
|                           |  |
|                           |  |
|                           |  |
|                           |  |
|                           |  |
|                           |  |
|                           |  |
|                           |  |

