

## AP<sup>®</sup> Calculus BC 2004 Sample Student Responses Form B

The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program<sup>®</sup>. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. This permission does not apply to any third-party copyrights contained herein. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.

The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the association is composed of more than 4,500 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT<sup>®</sup>, the PSAT/NMSQT<sup>®</sup>, and the Advanced Placement Program<sup>®</sup> (AP<sup>®</sup>). The College Board is committed to the principles of excellence and equity, and that commitment is embodied in all of its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com

Copyright © 2004 College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Central, AP Vertical Teams, APCD, Pacesetter, Pre-AP, SAT, Student Search Service, and the acorn logo are registered trademarks of the College Entrance Examination Board. PSAT/NMSQT is a registered trademark of the College Entrance Examination Board and National Merit Scholarship Corporation. Educational Testing Service and ETS are registered trademarks of Educational Testing Service. Other products and services may be trademarks of their respective owners.

For the College Board's online home for AP professionals, visit AP Central at apcentral.collegeboard.com.



## CALCULUS BC SECTION II, Part A Time—45 minutes Number of problems—3

A graphing calculator is required for some problems or parts of problems.

Work for problem 1(a)  

$$speed = \sqrt{(z'(o))^{2}} (U'(o))^{2}$$

$$dz'(o) = \sqrt{0^{4}+9} = \sqrt{9} = 3 \qquad dy'(o) = 2e^{0} + 5e^{0} = 2 + 5 = 7$$

$$olt \qquad speed = \sqrt{3^{2} + 7^{2}} = \sqrt{58} = 7.616(3d \cdot p)$$
acceleration: 
$$\frac{d^{2}z^{2}}{dt^{2}} = \frac{1}{2\sqrt{t^{4}+9}} (4t^{3}) = \frac{2t^{3}}{\sqrt{t^{4}+9}}$$

$$\frac{d^{3}y^{4}}{\sqrt{t^{4}+9}} = 2e^{t} - 5e^{-t}$$

$$(\sqrt{2t^{4}+9}) + 2e^{t} - 5e^{-t}) = \frac{2e^{t}}{2t^{2}} = 0 \quad (o, -3)$$
Work for problem 1(b)

$$n_{T} = slope = \frac{dy}{dx} = \frac{\frac{dy}{dx}}{\frac{dx}{dx}} = \frac{2e^{t} + 5e^{-t}}{\sqrt{t^{4} + q}} \quad \text{at } t = 0 \quad \frac{dy}{dx} = \frac{3}{3}$$

$$y - y_{0} = m_{T}(x - x_{0}) \Rightarrow y - 1 = \frac{3}{3}(x - q) \Rightarrow y - 1 = \frac{3}{3}x - \frac{38}{3}$$

$$= y = \frac{3}{3}x - \frac{25}{3} \Rightarrow \frac{3y = 7x - 25}{3}$$

Continue problem 1 on page 5.

## 1 1 1 1 1 1 1 1 A

Work for problem 1(c)  

$$d = \int \sqrt{\frac{dx}{dt}^{2}} + \left(\frac{dy}{dt}\right)^{2} dt = \int \sqrt{t^{4}+9} + (2e^{t}+5e^{-t})^{2} dt$$

$$= \int \sqrt{t^{4}+9} + 4e^{4t} + 20 + 85e^{-4t} dt$$

$$= \int \sqrt{t^{4}+4e^{4t}} + 25e^{-4t} + 29 dt$$

$$= 45.927$$

Work for problem 1(d)  

$$\frac{dx}{dt} = \sqrt{t^{4}+9} \implies dx = \sqrt{t^{4}+9} \quad dt \quad \Rightarrow x = \sqrt[3]{\sqrt{t^{4}+9}} \quad dt \quad$$
Since  $\frac{dx}{dt} \implies t = 0$  is  $\frac{dy}{dt} \implies t = 0$ ,  $\Rightarrow$  particle does not stop  
 $\frac{dx}{dt} \implies t = 0$  is  $\frac{dy}{dt} \implies t = 0$ ,  $\Rightarrow$  moves in a straight line.  
 $2c - ccordinate = 2c(0) + \sqrt[3]{\sqrt{t^{4}+9}} \quad dt$   
 $= 4 + 13.931 = 17.931.$ 

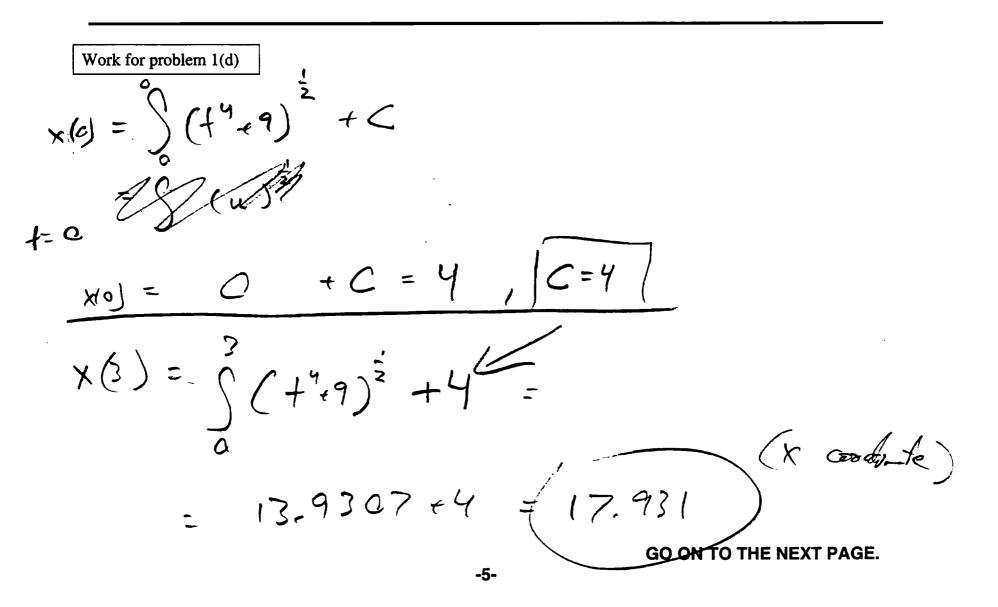
GO ON TO THE NEXT PAGE.



## CALCULUS BC SECTION II, Part A Time—45 minutes Number of problems—3

A graphing calculator is required for some problems or parts of problems.

| Work for problem 1(a) Speed = man<br>acceleration                                      | putude = July 2 + dy 2<br>At At                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vector $\left(\frac{1(4+3)}{2e^{+}-5e^{+}}\right)$                                     | $= \int (J + 49)^{2} + (2e^{+} + 5e^{-+})^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2(+1+4)2 +=                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                        | -J58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Work for problem 1(b) $f = c$<br>$slope = \frac{ds}{dt} = \frac{2+5}{7} = \frac{3}{7}$ | $73 = -\frac{7}{3} - \frac{7}{3} $ |
|                                                                                        | $y = \frac{7}{3} \times -\frac{29}{3} \times -\frac{31}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |


Continue problem 1 on page 5.

D,

1 1 1 1 1 1 1 1 1 1 D<sub>2</sub>  
Work for problem 1(c)  
Tobe List of = loost of conve  

$$L = \int_{0}^{3} (5y + a)^{2} + (2e^{+}5e^{-+})^{2}$$

= 45.227

